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Asymptotic solutions of time dependent anharmonic 
oscillator equation 
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CRPE/CNRS/CNET, Universite d’orleans, 45045 Orleans Cedex, France 

Received 15 February 1980, in final form 8 December 1980 

Abstract. A one-dimensional time dependent anharmonic oscillator is considered in the 
frame of transformation group techniques. Asymptotic solutions are obtained for the class 
of time decreasing coefficients of the equation. 

1. Introduction 

The ‘time varying frequency harmonic oscillator equation’ d2q/dt2 + o ’(t)q = 0 is one 
of the favourite topics of mathematical physics. It allows one to study interesting 
concepts such as the adiabatic invariant one, for example. Recently a new treatment 
was introduced (Burgan et a1 1978a) (Leach 1977) consisting in a ‘rescaling’ on q and in 
the introduction of a new time. These transformations, which form a group, are 
characterised by a function C( t )  which is chosen in order to simplify the problem. 
Especially when o’( t )+O as t +CO, we see how C(t)  must be selected to obtain the 
asymptotic form of the solution and so know more precisely if the oscillator always feels 
the force field (describing a spiral in phase space) or becomes free of it (asymptotically 
moving as a free particle, a behaviour connected to the breaking of the adiabatic 
invariants). It has been shown that the limiting case was for w ( t )  varying as t - ’ .  For a 
slower decay, the WKB approximation is correct for all values of t. For a faster decay, 
the particle becomes asymptotically free. This is detailed in Burgan et a1 (1978b). 

The purpose of this paper is to extend these results to the following equation 

d2q/d t2+Ao2( t )q+BA(t )q3=0 . . .  + A w ’ ( t ) q + . . .  (1) 

with A E R  andB ER. 

study of an equation with a q 2  (instead of q 3  term) is given by Leach (1979). 
Preliminary results on this equation have been reported by Burgan et a1 (1980) and a 

We suppose that for a large enough time we have the relations 

”(t)  = (1 +at)-@ 
A ( t )  = (1 + at)-” 

with CL E R’, v E R’. 
For commodity, we shall take them to be true on the whole interval t E [0, CO[. We 

look for the asymptotic solutions using the group transformation technique under the 
three following rules (Burgan 1978a). 
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(i) We use the generalised canonical transformation characterised by the arbitrary 
function C(t) transforming the x ,  z1 = dx/dt, r space into the new space &,q = de/d8, 8 
with conservation of the Hamiltonian formalism (see below). 

(ii) We try by a proper selection of the arbitrary function C(t )  to transform the 
infinite extension of t into a finite interval (time renormalisation). 

jiii) This last objective must not be obtained at the expense of coefficients of the new 
equation going to infinity. The finiteness of these coefficients has priority on (ii) and 
sometimes we simply obtain 'time compression' instead of time renormalisation. 

The generalised canonical transformation is characterised by a function C (t) such 
that the variation of q is expressed both through a rescaling characterised by C(t) and a 
variation of 6 with the new time 8. 

( 2 )  
4 = t ( w  ( t )  

e = e ( t ) .  

Introducing (2) into (1) we obtain 

We want to keep a Hamiltonian formalism in the new space which consequently implies 
that the term de/d8 cancels. Consequently 

d8ldt = 1/C2 .(3) 

and (1) becomes 

(4) 

In (4) we will call Ao2C45, eC3d2C/dt2 and BAC6e3, the rescaled linear physical field, 
the transformation field and the rescaled non-linear physical field, respectively, a quite 
natural designation for the three last terms of (4). 

Since we have supposed that o and A vary as (1 + f2r)-fi and (1 + fit)-., we take C (t) 
varying as (1 +at)' ; y is left to our choice with the rules already indicated. No infinity 
must appear in the e and e3 coefficients, and within this constraint y must be as big as 
possible in order to renormalise the time or at least to compress it as much as we can. 

We shall distinguish two cases in this study: v < $p and v > $p. This inequality comes 
from the fact that we want to keep finite both Au2C4 and RAC'; the first term implies 
that y s $p and the second that y s iv. Now if y < $p, taking y S &v implies that y < i p  
and vice versa, if v > &, taking y s i p  implies that y <iv. 

2. Quickly decreasing linear term 

We first consider v < Zp. 

comment on it, starting from the last line. 

The time is renormalised (CM varies from 0 to l), the coefficients of e and e3 remain 
finite in the interval 0 < 8 < K' and take the value 0 for a8 = 1 ; the solution of (4) gives 

The choice of C(t) is shown in table 1. This choice is easy to understand. We will 

(a) v >6. 
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the limiting point er and consequently V A and B, the motion in q space corresponds to a 
free particle one. 

q a s = ( l + . n t )  

(where the subscript as stands for asymptotic). 

The time undergoes a logarithmic compression. Taking C( t )  = (1 + would give a 
time renormalisation, and would of course simplify the term hC6, but this is impossible 
because of (iii) since the term C3C would blow up. We consequently take y = $ which 
keeps the transformation field finite. Notice that the only other possibility for y is to 
take the value one, but v must be bigger than or equal to 6 to keep finite the nonlinear 
rescaled field. 

(b) 3 < v < 6 .  

Table 1. 

0 < v < 3  

v = 3  
implying 

3 < v < 6  
implying 
CC. ’2 
v = 6  
implying 
P >4 
v > 6  
implying 
P 1 4  

CC. ’2 

(1+SLt)”’6 i 1 2 i v ( ~ v  - 1) A(1+Rt)5’-m E 
(l+nt)- 

(1 + nt)”2 --an2 A exp[CM(2-p)] E 

[lAl - fv)1 
x [(l +at)’-+. - 11 
In(1 +at) 

(1 +nt)”2 -in’ A exp[Rd(2-p)] B exp[ne(3-v)] In(l+nt) 

The equation becomes 

d25/de + [ A  exp - ne (w - 2) - $12]5 + [B exp - lR8 (v - 3)g’ = 0. (5 )  
When 8 +CO, then the term A exp[-fM(w .- 2)] is negligible compared with (-$a2). 
One has to evaluate the respective importance of the terms in 5 and t3.  We notice that 
the coefficient of the e3  term goes to zero. Consequently, we first suppose that ( 5 )  is 
equivalent to 

d25/d8 * - &’5 = 0. (6) 
The solution of (6) is proportional to exp(R8/2) and we look at the ratio R of the 5 and 
t3  terms 

B[exp (128(3 - .)]E3 
R = /  

/ behaves as exp n8(4 -- v). in2( 
Consequently 

(b’) If 6 > v > 4, R + 0 when 8 +CO and ( 5 )  is equivalent to (6); we have, asymp- 
totically, e(8) a exp(n8/2) and C( t )  = (1 + = exp(CU3/2). Consequently q = 
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<(6)C(t)  behaves as exp(O8) i.e. as (1 +at) and we have, for large time, the motion of a 
free particle. 

(b”) If 4 > v > 3, the following transformation 5 = $ exp[(v - 3)a6/2] leads to the 
equation 

d2$/de + Cn(v - 3)d+,/dO + [(v - 4)(v - 2)a2/4 +A exp a6 (2 - p )I$ + BG3 = 0. (7) 

Since p > 2, the term A exp 0 6  (2 - p )  -+ 0 (independently of the sign of A), and if 
B >0, (7)  shows that we have a damped motion (v - 3 >0) in a potential of the form 
given in figure 1. Consequently the solution will reach one of the holes given by rt$[ 
with 

$1 = [4B/(4 - v ) ( v  - 2 ) a 2 y 2  

the sign will be fixed by the initial conditions and we have two limiting points in the 
5, dt/d8 phase plane. 

Figure 1. Asymptotic potential for 4 > U  > 3, B > 0. 

So the asymptotic solution, after the damping of the initial oscillation is 

qas= *[4B/(4-v)(v -2)a2]]’/’(1 +at)+]’. (8) 
We must notice that (8) is exactly the self-similar solution obtained by solving (1) where 
we have first neglected the linear term (which unless p = 2  blocks any possible 
self-similar solution). This self-similar solution obtained by writing q = K (1 + in 
the simplified equation and properly identifying cu and K,  consequently plays the role of 
an attractor. 

If B < 0, $ goes to infinity very quickly, and more precisely, reaches an infinite value 
in a finite time 6, indicating an explosive instability. 

(c) If v = 3, equation ( 5 )  becomes 

d25/d6 + [A exp - a6 (F - 2) - $12]t +Bt3 = 0. (9) 
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When 8 + CO, then A exp[-R8 (p - 2)] + 0 since p >;U = 2. d 2 ~ / d 0 2  = -dV/d( = 
-Be3 + iR’6, the aspect of the potential V is the same as before when B > 0. Since there 
is no damping, the 5 solution is oscillatory, in zone I, I1 or I11 according to the initial 
conditions. We also remark that the case p = 2,  U = 3 can be completely integrated with 
the use of elliptic integrals. 

When B < 0, we again have an explosive instability and 6 goes to  infinity in a finite 
time. One can compute the motion by integrating once the equation 

d2t/d8 ’ - $2’6 - IB )e3 = 0 

dE/de = *($R’~2+~IB/64+C)1/2 ( 1  1) 

(10) 
we obtain 

the constant is determined by the initial conditions. Excluding the particular condition 
6 = 0, d(/dB = 0 when 8 = 0, we have to consider one of the integrals 

These integrals are bounded and the integration on 5 gives a finite time. The diagrams 
2(a )  and 2(b)  show the evolution of 5 with time. 

/a1 i b i  

Figure 2. Time evolution of 6 according to the two possible classes of initial conditions 
(v < $11, v r 3, B < 0): (a ) a/dO > C ; (b ) d(/dO < C.  C f ($’[: + -$6,J1’2. 

(d) If U <3, we take y = u/6 and terms in C3d2C/dt2 and w 2 C 4  decreases to zero. 
The asymptotic equation is 

d25/d0 ’ + B t 3  = 0 (12)  

which solution is a nonlinear oscillatory movement if B > 0 and an explosive instability 
if B < O  (Davis 1962). 

3. Quickly decreasing non-tinear terms 

Second case: U > qp. 
The choice of C(t)  is shown in table 2. The analysis of the different cases is performed in 
the same way as before. 
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Table 2. 

o<p < 2  (1 + i p  ( ip - 1) A B (1 + nt):” [1/(1-&)1 
(1 + m y z  x[(l+nt)’-:’1-1] 

p = 2  v > 3  (l+nt)1/2 -in’ A B exp[fM (3 - v)] In( 1 + Ot) 
2 < p < 4  v > 3  ( l + n t ) ’ ”  -$k2 A exp[ne(2-@)] B exp[ne(3-v)] ln( l+Rt)  

p = 4  v > 6  1+nt 0 A B (1 - ne)”-6 nt/( 1 + nt) 
P > 4  v > 6  1+Rt  0 A ( 1  -ne)” -4 B (1 - nt/(l +at) 

(a) E.L >4.  
We can take y = 1 and for all values of A and B,  the asymptotic motion is the one of a 
free particle 

qasa (1 + at). 

(b) The case 2 <,U < 4 is divided in two parts according to the values of v since we 
must take y = and we recover equation (5). The analysis proceeds as before and for 
v > 4 we get a free particle motion, while for 4 > v > 3 we get the solution given by (8). 

The equation is 
(c) p =2 .  

d 2 t / d e 2 + ( A - ~ f l z ) ~ + B  exp[CM(3-v)](3 = O .  (13) 

(C, )  If (A -$I2) >0, since asymptotically the coeffcient of the term in e3 goes to 
zero and the solution 5 is oscillatory, the asymptotic amplitude goes as t”’. 

(C,) If (A -$a’) < 0, (13) must be studied as (5); the solution 5 = exp(-A+$R2)1/20 
must be introduced in (13) and the ratio of the last two terms of the LHS of (13) must be 
computed. Two cases appear: 

Asymptotically, the term in e3 is negligible, then the asymptotic solution in exp fXJ(i- 
A/az)1/2 and 

(Cz,) v >3+2(i-A/az)1/2.  

(1 + ~ t ) ~ + ( ~ - A / ~ ’ ) ’ ’ ’  
9 

(Cy) v < 3 + 2(2-A/Q2)1’2. 
With the following transformation 5 = CC, exp [ f M ( v  - 3)/2], (13) becomes 

d2* - + (v - 3)n- ‘* + [ (?a)’ - (:-A)] 51, +Bslr3 = 0. 
dB de 

For B > 0 (14) describes a damped motion (v > 3) in a potential which has the same 
form as given in figure l (a) .  goes to 

* I  = * [ B / [  (; -A) - ( y)zaz]]1/2 

and 
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We notice that in this case (p = 2) equation (l), this time without having to neglect any 
term, has a self-similar solution in t(Y/2-’). This solution is exactly (15). 

For B < O  + goes to infinity in a finite time (explosive instability). 
(C,) If A = ifl’, the term in + disappears in (14). Since v > 3 the last term in the RHS 

of (13) goes to zero and we obtain asymptotically the free motion solution in 5,8 space, 
i.e. 5 cc 8. 

(d) O<p < 2 ,  the coefficient of the transformation field and of the non-linear 
rescaled field go to zero; the asymptotic equation is 

d25/d8 +A( = 0. (16) 

If A >0, the solution c ( 8 )  stays finite and it is correct to neglect the other terms, 
especially the one in 13, since its coefficient goes to zero with 8. 

If A <0, the solution obtained by neglecting the t 3  term goes to infinity and 
consequently, we must check the consistency of the hypothesis. We find in that case that 
the e3 term always has a role to play. Consequently we introduce the following 
transformation 

6 =+(i+.nt)-d/2=+(i+csze)-d/2 
where 

applied to the complete equation (4) with the choice of C(t )  as indicated in the first line 
of table 2 gives 

d* -_ d2sl, dflc(l+cflO)-’--+. . . 
de d8 

When 8 + 00, (1 8) becomes 

d2+ ldlflc d+ 
d8’ l+cf l8  d8 
-+--+A++B+~=o 

which represents the damped motion of a particle in a potential +A+’ +&J~. If B > 0, 
we recover the two holes potential of figure 1 and the solution goes to I)[ = 
*(/AI/B)”’(A <O). Taking into account q =[C(t)  and 5 =+(l+cf18)-d/2= 
+(1 +f lnt ) -cd /2  we obtain 

qas = *(/Al/B)l”(l + f l t ) ( Y - F ” ) 2 .  (20) 
It is worth noticing that (20) is the solution obtained by neglecting the inertial term in (1) 
and observing that the repulsive (since A <O)  linear force is just balanced by the 
attractive non-linear one. 

If B < 0, + and consequently q goes to infinity in a finite time as already seen before. 
To summarise the results obtained, one can present figure 3 and table 3. 
The figure represents the parameter space p, v and is divided into eight zones 

labelled respectively from (1) to (8) and delineated by the oblique line v = 2p, three 
horizontal lines U = 3, v = 4, and v = 6, and two vertical lines p = 2 and p = 4. 
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L 

Figure 3. Summary of the results 

Table 3. Summary of the results 

A > O  A > O  A < O  A 4 0  
Superzone B > O  B < O  B > O  B < O  

I = (1) + (2) + ( 5 )  + (6) 
I1 = (3) + (7) (1 +nt)'lv-'' expl (1 + Or)  (4 U - 1 )  expl 

I11 = (4) NL oscill expl NL oscill expl 

IV = (8) L oscill L oscill (1 + ~ ~ Z ) ( ~ - L L ) / *  expl 

Free particle 

*(1+ntV "( 1 + nt)(Y/6) 

*( 1 + *( 1 + nt)'L/4 

For each zone we have the asymptotic solution, but some of the zones can be 
grouped together (forming four superzones) where the physical behaviour of the 
asymptotic solutions is the same-although we may have used different values of y in 
the different zones of the same superzone. For example, in (1) and ( 5 )  we have been 
able to renormalise the time with the consequence of a free-particle asymptotic motion 
while in (2) and (6) we have simply taken y = $ and checked that the solution exp LM/2 
obtained by neglecting the t 3  term (the coefficient of which vanishes) does indeed give a 
negligible term when introduced into the full equation. The superzones are formed by 
the union of the zones indicated in the first column. The asymptotic behaviour is given 
with L standing for linear oscillation, NL standing for non-linear oscillation and expl 
standing for explosive instability. Moreover, the time behaviour of the amplitudes for 
the linear and non-linear oscillation is indicated by *. 

4. Conclusion 

The generalised canonical transformation preserving the Hamiltonian formalism has 
been applied to problems where the forces include a linear and non-linear term, both 
decreasing asymptotically with some power of the time. One scale, for example, the 
length scale, characterised by C( t )  is at our disposal and all the others are subsequently 
derived from C(t ) .  By a proper selection of C(t )  we can obtain in the new time phase 
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space, an equation which can be asymptotically solved giving different limit cycles on 
limit points. Moreover, an interesting result is that the border of the regions in the 
parameter space pv where the solutions take different forms (bifurcation lines) are 
partly given by the possibility of finding self similar solutions. Moreover these solutions 
appear here as an attractor in superzone 11. This frontier status of the self-similar 
solution is, a posten'on', not very surprising since such solutions are obtained by forcing a 
balance between the different terms, which is time preserved. The self-similar solutions 
are consequently always interesting to obtain, a result which has been found in 
gravitational fluid mechanics, quantum adiabatic invariants and stellar dynamics. 
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